八六文档>基础教育>知识点>妙解高考数学填选压轴题专题26 有关三角形中的范围问题-妙解高考数学填选压轴题
妙解高考数学填选压轴题专题26 有关三角形中的范围问题-妙解高考数学填选压轴题
格式:docx页数:11页大小:312 K上传日期:2023-11-13 11:19浏览次数:401U1 侵权/举报

专题26有关三角形中的范围问题【方法点拨】1.正弦平方差公式sin2-sin2=sin(-sin(+2.化边、化角、作高三个方向如何选择是难点,但一般来说,涉及两内角正切间的等量关系时作高更简单些.【典型题示例】例1在锐角中,,则的取值范围为______________.【答案】【解析】∵,利用正弦定理可得:,由正弦平方差公式得,即,易知,故又为锐角三角形,∴,即,∴,∴,∵又,∴,令,则,由对勾函数性质知,在上单调递增,又,,∴.例2若的内角满足,则的最小值是.【答案】【分析】将已知和所求都“化边”,然后使用基本不等式即可.所求的最值可想到余弦定理用边进行表示,,考虑角化边得到:,进而消去计算表达式的最值即可【解析】 ∵sinA+eq\r(2)sinB=2sinC.由正弦定理可得a+eq\r(2)b=2c,即c=eq\f(a+\r(2)b,2),cosC=eq\f(a2+b2-c2,2ab)=eq\f(a2+b2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+\r(2)b,2)))\s\up12(2),2ab)=eq\f(3a2+2b2-2\r(2)ab,8ab)≥eq\f(2\r(6)ab-2\r(2)ab,8ab)=eq\f(\r(6)-\r(2),4),当且仅当3a2=2b2即eq\f(a,b)=eq\f(\r(2),\r(3))时等号成立.∴cosC的最小值为eq\f(\r(6)-\r(2),4).例3在锐角三角形ABC中,已知2sin2A+sin2B=2sin2C,则的最小值为 .【答案】【解析一】(作高线,化斜为直,角化边)由正弦定理,得:,如图,作BD⊥AC于D,设AD=x,CD=y,BD=h,因为,所以,,化简,得:,解得:x=3y,,,====.【解析二】(边化角)由正弦定理,得:,即,由余弦定理得:,即,由正弦定理,得:,即,化简得,以主元,化简得.例4在中,角所对的边分别为,若,则的面积的最大值为.【答案】【解析一】(余弦定理+二次函数)看到式子的结构特征,联想余弦定理得:所以当时,,的面积的最大值为.【解析二】(三角形中线长定理+基本不等式)设BC边上的中线为AM,则∵∴代人得:,即根据基本不等式得:又因为三角形一边上的中线不小于该边上的高所以所以,,当且仅当中线等于高,即中线垂直于底边时,等号成立,此时的面积的最大值为.【解法三】(隐圆)以AB的中点为原点,AB所在直线为x轴,建立平面直角坐标系.设Aeq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(c,2),0)),Beq\b\lc\(\rc\)(\a\vs4\al\co1(\f(c,2),0)),C(x,y),则由a2+b2+2c2=8,得eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(c,2)))2+y2+eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(c,2)))2+y2+2c2=8,即x2+y2=4-eq\f(5,4)c2,所以点C在以原点(0,0)为圆心,eq\r(4-\f(5,4)c2)为半径的圆上,所以S≤eq\f(c,2)eq\r(4-\f(5,4)c2)=eq\f(1,2\r(5))eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(4-\f(5,4)c2))+\f(5,4)c2))≤eq\f(2\r(5),5).【巩固训练】1.(多选题)在中,角的对边分别为,若,则角可为()A. B. C. D.2.在△ABC中,若,则cosB的最小值是.3.已知中,,则的最大值是 ()A. B. C. D.4.若的内角满足,则角的最大值是.5.已知在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若,则的取值范围是()A. B. C. D.6.在锐角中,角A,B,C的对边分别是a,b,c,,,当A,B则变化时,存在最大值,则正数的取值范围为______________.A.B.C.D.7.在ΔABC中,设角A,B,C的对边分别是a,b,c,若2a,b,c成等差数列,则3sinA+2sinC的最小值为________.8.在锐角三角形中,角、、的对边分别为、、,且满足,则的取值范围为___________.9.在锐角中,角的对边分别为,的面积为,若,则的最小值为()A. B.2 C.1 D.【答案或提示】1.【答案】BC【解析】∵,利用正弦定理可得:,由正弦平方差公式得,即,易知,故∴,即∵,∴,∴,故选:BC.2.【答案】【提示】已知可化为,弦化切得∴∴,,∴.3.【答案】A【提示】化边、化角、作高三个方向均可解决.4.【答案】【解析】由可得:,∵在递减,∴5.【答案】C【解析】由得:,即即,而,所以又为锐角三角形,∴,即,∴,∴6.【答案】A【解析】由,得:根据正弦定理得:,即又为锐角三角形,∴,即,∴,∴,()∵∴欲使存在最大值,必有∴,故,即.7.【答案】23+1【解析】由题得2b=2a+c,∴cosB=a2+c2−b22ac=a2+c2−(22a+c2)22ac,所以cosB=12a2+34c2−22ac2ac≥212a2⋅34c2−22ac2ac=6−24,所以0

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服