八六文档>基础教育>知识点>十年(2014-2023)高考物理真题分项汇编专题24 动能定理的应用(二)(学生版)-(全国通用)
十年(2014-2023)高考物理真题分项汇编专题24 动能定理的应用(二)(学生版)-(全国通用)
格式:docx页数:13页大小:1.1 M上传日期:2023-11-14 09:37浏览次数:249U1 侵权/举报

专题24动能定理应用(二)28.(2023·江苏)如图所示,滑雪道AB由坡道和水平道组成,且平滑连接,坡道倾角均为45°。平台BC与缓冲坡CD相连。若滑雪者从P点由静止开始下滑,恰好到达B点。滑雪者现从A点由静止开始下滑,从B点飞出。已知A、P间的距离为d,滑雪者与滑道间的动摩擦因数均为,重力加速度为g,不计空气阻力。(1)求滑雪者运动到P点的时间t;(2)求滑雪者从B点飞出的速度大小v;(3)若滑雪者能着陆在缓冲坡CD上,求平台BC的最大长度L。  29.(2023·浙江)一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角的直轨道、螺旋圆形轨道,倾角的直轨道、水平直轨道组成,除段外各段轨道均光滑,且各处平滑连接。螺旋圆形轨道与轨道、相切于处.凹槽底面水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁处,摆渡车上表面与直轨道下、平台位于同一水平面。已知螺旋圆形轨道半径,B点高度为,长度,长度,摆渡车长度、质量。将一质量也为的滑块从倾斜轨道上高度处静止释放,滑块在段运动时的阻力为其重力的0.2倍。(摆渡车碰到竖直侧壁立即静止,滑块视为质点,不计空气阻力,,)(1)求滑块过C点的速度大小和轨道对滑块的作用力大小;(2)摆渡车碰到前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数;(3)在(2)的条件下,求滑块从G到J所用的时间。30.(2022·浙江)如图所示,在竖直面内,一质量m的物块a静置于悬点O正下方的A点,以速度v逆时针转动的传送带MN与直轨道AB、CD、FG处于同一水平面上,AB、MN、CD的长度均为l。圆弧形细管道DE半径为R,EF在竖直直径上,E点高度为H。开始时,与物块a相同的物块b悬挂于O点,并向左拉开一定的高度h由静止下摆,细线始终张紧,摆到最低点时恰好与a发生弹性正碰。已知,,,,,物块与MN、CD之间的动摩擦因数,轨道AB和管道DE均光滑,物块a落到FG时不反弹且静止。忽略M、B和N、C之间的空隙,CD与DE平滑连接,物块可视为质点,取。(1)若,求a、b碰撞后瞬时物块a的速度的大小;(2)物块a在DE最高点时,求管道对物块的作用力与h间满足的关系;(3)若物块b释放高度,求物块a最终静止的位置x值的范围(以A点为坐标原点,水平向右为正,建立x轴)。31.(2022·广东)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态。当滑块从A处以初速度为向上滑动时,受到滑杆的摩擦力f为,滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动。已知滑块的质量,滑杆的质量,A、B间的距离,重力加速度g取,不计空气阻力。求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小和;(2)滑块碰撞前瞬间的速度大小v1;(3)滑杆向上运动的最大高度h。32.(2022·浙江)如图所示,处于竖直平面内的一探究装置,由倾角=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度,滑块与轨道FG间的动摩擦因数,滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。滑块开始时均从轨道AB上某点静止释放,()(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;(2)设释放点距B点的长度为,滑块第一次经F点时的速度v与之间的关系式;(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度的值。33.(2021·福建)如图(a),一倾角的固定斜面的段粗糙,段光滑。斜面上一轻质弹簧的一端固定在底端C处,弹簧的原长与长度相同。一小滑块在沿斜面向下的拉力T作用下,由A处从静止开始下滑,当滑块第一次到达B点时撤去T。T随滑块沿斜面下滑的位移s的变化关系如图(b)所示。已知段长度为,滑块质量为,滑块与斜面段的动摩擦因数为0.5,弹簧始终在弹性限度内,重力加速度大小取,。求:(1)当拉力为时,滑块的加速度大小;(2)滑块第一次到达B点时的动能;(3)滑块第一次在B点与弹簧脱离后,沿斜面上滑的最大距离。34.(2021·北京)秋千由踏板和绳构成,人在秋千上的摆动过程可以简化为单摆的摆动,等效“摆球”的质量为m,人蹲在踏板上时摆长为,人站立时摆长为。不计空气阻力,重力加速度大小为g。(1)如果摆长为,“摆球”通过最低点时的速度为v,求此时“摆球”受到拉力T的大小。(2)在没有别人帮助的情况下,人可以通过在低处站起、在高处蹲下的方式使“摆球”摆得越来越高。a.人蹲在踏板上从最大摆角开始运动,到最低点时突然站起,此后保持站立姿势摆到另一边的最大摆角为。假定人在最低点站起前后“摆球”摆动速度大小不变,通过计算证明。b.实际上人在最低点快速站起后“摆球”摆动速度的大小会增大。随着摆动越来越高,达到某个最大摆角后,如果再次经过最低点时,通过一次站起并保持站立姿势就能实现在竖直平面内做完整的圆周运动,求在最低点“摆球”增加的动能应满足的条件。35.(2021·山东)如图所示,三个质量均为m的小物块A、B、C,放置在水平地面上,A紧靠竖直墙壁,一劲度系数为k的轻弹簧将A、B连接,C紧靠B,开始时弹簧处于原长,A、B、C均静止。现给C施加一水平向左、大小为F的恒力,使B、C一起向左运动,当速度为零时,立即撤去恒力,一段时间后A离开墙壁,最终三物块都停止运动。已知A、B、C与地面间的滑动摩擦力大小均为f,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内。(弹簧的弹性势能可表示为:,k为弹簧的劲度系数,x为弹簧的形变量)(1)求B、C向左移动的最大距离和B、C分离时B的动能;(2)为保证A能离开墙壁,求恒力的最小值;(3)若三物块都停止时B、C间的距离为,从B、C分离到B停止运动的整个过程,B克服弹簧弹力做的功为W,通过推导比较W与的大小;(4)若,请在所给坐标系中,画出C向右运动过程中加速度a随位移x变化的图像,并在坐标轴上标出开始运动和停止运动时的a、x值(用f、k、m表示),不要求推导过程。以撤去F时C的位置为坐标原点,水平向右为正方向。36.(2020·浙江)小明将如图所示的装置放在水平地面上,该装置由弧形轨道、竖直圆轨道、水平直轨道和倾角的斜轨道平滑连接而成。质量的小滑块从弧形轨道离地高处静止释放。已知,,滑块与轨道和间的动摩擦因数均为,弧形轨道和圆轨道均可视为光滑,忽略空气阻力。(1)求滑块运动到与圆心O等高的D点时对轨道的压力;(2)通过计算判断滑块能否冲出斜轨道的末端C点;(3)若滑下的滑块与静止在水平直轨道上距A点x处的质量为的小滑块相碰,碰后一起运动,动摩擦因数仍为0.25,求它们在轨道上到达的高度h与x之间的关系。(碰撞时间不计,,)37.(2020·全国)如图,一竖直圆管质量为M,下端距水平地面的高度为H,顶端塞有一质量为m的小球。圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直。已知M=4m,球和管之间的滑动摩擦力大小为4mg,g为重力加速度的大小,不计空气阻力。(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度;(3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件。38.(2020·浙江)如图所示,一弹射游戏装置由安装在水平台面上的固定弹射器、竖直圆轨道(在最低点E分别与水平轨道和相连)、高度h可调的斜轨道组成。游戏时滑块从O点弹出,经过圆轨道并滑上斜轨道。全程不脱离轨道且恰好停在B端则视为游戏成功。已知圆轨道半径,长,长,圆轨道和光滑,滑块与、之间的动摩擦因数。滑块质量m=2g且可视为质点,弹射时从静止释放且弹簧的弹性势能完全转化为滑块动能。忽略空气阻力,各部分平滑连接。求(1)滑块恰好能过圆轨道最高点F时的速度大小;(2)当且游戏成功时,滑块经过E点对圆轨道的压力大小及弹簧的弹性势能;(3)要使游戏成功,弹簧的弹性势能与高度h之间满足的关系。39.(2019·天津)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示.为了便于研究舰载机的起飞过程,假设上翘甲板是与水平甲板相切的一段圆弧,示意如图2,长,水平投影,图中点切线方向与水平方向的夹角().若舰载机从点由静止开始做匀加速直线运动,经到达点进入.已知飞行员的质量,,求(1)舰载机水平运动的过程中,飞行员受到的水平力所做功;(2)舰载机刚进入时,飞行员受到竖直向上的压力多大.40.(2018·浙江)如图所示,一轨道由半径为2m的四分之一竖直圆弧轨道AB和长度可以调节的水平直轨道BC在B点平滑连接而成.现有一质量为0.2kg的小球从A点无初速度释放,经过圆弧上的B点时,传感器测得轨道所受压力大小为3.6N,小球经过BC段所受阻力为其重力的0.2倍,然后从C点水平飞离轨道,落到水平面上的P点,P、C两点间的高度差为3.2m.小球运动过程中可以视为质点,且不计空气阻力.(1)求小球运动至B点的速度大小以及小球在圆弧轨道上克服摩擦力所做的功;(2)为使小球落点P与B点的水平距离最大,求BC段的长度;(3)小球落到P点后弹起,与地面多次碰撞后静止.假设小球每次碰撞机械能损失75%,碰撞前后速度方向与地面的夹角相等.求小球从C点飞出后静止所需的时间.41.(2015·浙江)如图所示,用一块长的木板在墙和桌面间架设斜面,桌面高H=0.8m,长.斜面与水平桌面的倾角可在0~60°间调节后固定.将质量m=0.2kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数,物块与桌面间的动摩擦因数,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取;最大静摩擦力等于滑动摩擦力)(1)求角增大到多少时,物块能从斜面开始下滑;(用正切值表示)(2)当增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数;(已知sin37°=0.6,cos37°=0.8)(3)继续增大角,发现=53°时物块落地点与墙面的距离最大,求此最大距离.42.(2015·上海)质量为m的小球在竖直向上的恒定拉力作用下,由静止开始从水平地面向上运动,经一段时间,拉力做功为W,此后撤去拉力,球又经相同时间回到地面,以地面为零势能面,不计空气阻力.求:(1)球回到地面时的动能;(2)撤去拉力前球的加速度大小a及拉力的大小F;(3)球动能为W/5时的重力势能.43.(2015·重庆)同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置.图中水平放置的底板上竖直地固定有M板和N板.M板上部有一半径为的圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为.N板上固定有三个圆环.将质量为的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为处.不考虑空气阻力,重力加速度为.求:(1)距Q水平距离为的圆环中心到底板的高度;(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;(3)摩擦力对小球做的功.44.(2014·全国)如图,O、A、B为同一竖直平面内的三个点,OB沿竖直方向,,,将一质量为m的小球以一定的初动能自O点水平向右抛出,小球在运动过程中恰好通过A点。使此小球带电,电荷量为q(q>0),同时加一匀强电场,场强方向与所在平面平行,现从O点以同样的初动能沿某一方向抛出此带电小球,该小球通过了A点,到达A点时的动能是初动能的3倍;若该小球从O点以同样的初动能沿另一方向抛出,恰好通过B点,且到达B点的动能为初动能的6倍,重力加速度大小为g。求(1)无电场时,小球达到A点时

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服